1. The diagram shows energy levels in an atom.

Arrow **X** shows the movement of an electron that has absorbed infrared radiation.

Which arrow shows the movement of the same electron if it had absorbed radiation with more energy?

Your answer [1]

2. Atoms can emit or absorb electromagnetic radiation when electrons move between energy levels.

The diagram shows electron transitions **Y** and **Z** between energy levels in an atom.

i. Draw an arrow on the diagram showing the transition of an electron in the **lowest** energy level when it is lost from the atom.

	words in th	e list.				
absorbe	ed em	iitted	excited	ionised		
higher t	han lov	ver than	the same as			
				as shown by arro	ow Y , electromagnetic radiati	on is
ne freque		tromagnetic			is	the
Complet Table 1		1 to show t	he composition o	f an alpha parti d	cle.	
		Numbe	er of protons			
		Numbe	er of neutrons			
		Numbe	r of electrons			
•	n swallows a		ount of polonium-	210. Doctors exa	amine the person using a Ge	eiger-Mi
Evoloin	why the doo	ctors do no	t detect the polor	ium-210 inside t	he body.	
⊏хріаін						
	10, ²¹⁰ Po, ca	n be made	in a nuclear reac	tor in two steps.		
lonium-2			in a nuclear reac	•	make ²¹⁰ 88i.	
lonium-2	st step, bisn	nuth-209, ²		with neutrons to		

[2]

ii. In the second step, $^{210}_{83}$ Bi decays to form $^{210}_{84}$ Po.

Complete the **balanced nuclear** equation for this decay.

(c). The graph shows how the mass of a sample of polonium-210 changes with time.

i. Use the graph to complete **Table 18.2**. Two answers have been filled in for you.

Table 18.2

Time (days)	Mass (μg)
0	160
200	
400	30
600	

B 16 cpm

C 32 cpm

D 48 cpm

Your answer [1]

END OF QUESTION PAPER